

www.azte.com

Inventors

Bruce Rittmann

Regents Professor The Biodesign Institute Arizona State University

Hyung-Sool Lee

Graduate Research Associate The Biodesign Institute Arizona State University

Cesar Torres

Postdoctoral Research Associate The Biodesign Institute Arizona State University

Anca Delgado

Graduate Research Associate School of Life Sciences Arizona State University

Rolf Halden

Associate Professor The Biodesign Institute Arizona State University

Rosa Krajmalnik-Brown

Assistant Professor The Biodesign Institute Arizona State University

Intellectual Property Status:

Patent Pending

Contact

Jack Geltosky, PhD

Senior Vice President

Business Development, Life Sciences

Arizona Technology Enterprises, LLC (AzTE)

P: 480.884.1989

F: 480.884.1984

JGELTOSKY@AZTE.COM HEALTHSCIENCES@AZTE.COM

Methods and Systems for Reduction of Halogenated Compounds

AzTE Case # M10-050

Invention Description

Halogenated organic compounds (organohalides) have often been released into the soil and groundwater. These compounds may be carcinogenic and are hazardous to the natural environment. A significant need exists therefore for techniques to efficiently decontaminate these types of toxic compounds.

Researchers at the Biodesign Institute of Arizona State University have developed methods and systems for dehalogenating organohalides present at contamination sites. Dehalogenation of contaminants can be achieved by providing hydrogen to anaerobic dehalogenating bacteria. Hydrogen can readily be created *in situ* through the electrolysis of water.

The method is efficient, inexpensive, renewable, and enables onsite decontamination of water and soil.

Potential Applications

- Groundwater treatment systems
- Water purification
- Wildlife preservation
- Contamination prevention

Benefits and Advantages

- Adaptable to different conditions at particular sites
- In situ decontamination