

www.azte.com

Inventors

David R. Nielsen

Assistant Professor School for the Engineering of Matter, Transport and Energy Arizona State University

Wei Yuan

Postdoctoral Researcher School for the Engineering of Matter, Transport and Energy Arizona State University

Expanded Bed Adsorption for Biofuel Recovery from Microbial Cultures

AzTE Case # M11-029

Invention Description

As a result of cytotoxicity and/or poor net yields, microbial biofuels may typically only accumulate to low final concentrations in culture media. Their efficient, rapid, and thorough recovery from the culture medium is a universal challenge to the biotechnology industry. Solid-phase adsorption is commonly employed to provide high efficiency separations of microbial products from culture media. However, traditional chromatographic applications are poorly compatible with the *in situ* recovery of biofuels.

Researchers at Arizona State University have developed a novel, expanded bed adsorption and elution process for the recovery of biofuel products or precursors from cell culture medium. This is accomplished via an *in situ* and biocompatible approach to enable high and continuous productivity. Separation can be achieved in a manner that does not disrupt cell growth, precludes the use of special cell separation equipment, and requires only minimal energetic input.

Continuous Return to Bioreactor

Retained in Column: Adsorbent G Target Molecule

Passes through Column: Living Cell/Cell Debris 🔺 Air Bubble 🥥

> Continuous Feed from Bioreactor

- **Potential Applications**
 - Recovery and purification of:
 - Biofuels
 - o Biochemicals

Benefits and Advantages

- Biocompatible achieves separation in a manner supporting continued cell growth and productivity
- Economical a low energy and low cost process
- *In situ* relieves product inhibition and/or reduce contamination through continuous product removal
- Adaptable adsorbent can be easily substituted to meet specific separation needs
- Scalable can be sized to meet process requirements
- Modular External process design amenable to retrofit applications

Contact

Status:

Patent Pending

Jack Geltosky, PhD

Senior Vice President

Business Development, Life Sciences

Intellectual Property

Arizona Technology Enterprises, LLC (AzTE)

P: 480.884.1989

F: 480.884.1984

JGELTOSKY@AZTE.COM HEALTHSCIENCES@AZTE.COM