

www.azte.com

Inventor

Kevin Bennett

Assistant Professor The Biodesign Institute Arizona State University

Maria Veronica Clavijo-Jordan

Graduate Research Assistant Department of Biomedical Engineering Arizona State University Techniques to increase R_1 in nanoparticle contrast agents for MRI

AzTE Case # M11-118

Invention Description

Noninvasive imaging systems, such as PET, SPECT, MRI, and CT, have become an essential part of modern medicine. Though MRI provides good contrast between the different soft tissues, contrast agents may be used to enhance the appearance of blood vessels, tumors, inflammation, or joints. When a contrast agent is specified, it is important to use one giving as high a contrast as possible, preferably by increasing R_1 .

Researchers at the Biodesign Institute of Arizona State University have developed an innovative MRI contrast agent with a per-ion R_1 relaxivity at least twice as great as that of existing agents. By combining paramagnetic materials with magnetoferritin under controlled conditions, an MRI contrast agent with a per-ion R_1 of $330 \text{mM}^{-1}\text{s}^{-1}$ was synthesized. In addition to its high R_1 value, this agent is small (~10 nm) and spherical, allowing for easier delivery than existing agents.

In addition to the immediate usefulness of the novel contrast agent, the method of synthesis may be used to produce contrast agents with even higher R_1 relaxivity or other tailored properties.

Potential Applications

MRI contrast agent

Contact

Status: Patent Pending

Thomas Goodman, PhD MBA Director of Business Development, Life Sciences

Intellectual Property

Arizona Technology Enterprises, LLC (AzTE)

P: 480.884.1989

F: 480.884.1984

TOMGOODMAN@AZTE.COM HEALTHSCIENCES@AZTE.COM

Benefits and Advantages

- R_1 values at least twice as high (330mM⁻¹s⁻¹) than existing contrast agents
- Less susceptible to confounding image artifacts than contrast agents that increase T₂.
- Easier delivery than existing agents, due to its small size (~10 nm) and spherical shape