

www.azte.com

DNA Gridiron

Inventors

Biophysics

Hao Yan

Biophysics

Professor

Dongran Han

Graduate Research Associate Center for Single Molecule

The Biodesign Institute

Arizona State University

Center for Single Molecule

The Biodesign Institute

Arizona State University

AzTE Case # M13-226L

Invention Description

Self-assembling nucleic acid molecules have been utilized extensively for constructing unique nanoscale structures, and designing increasingly complex structures is a top nanotechnology challenge. Current methods to create NDA nanostructures are restricted to discrete domains of parallel lines as a result of the double crossover based unit motif, which doesn't lend itself to highly complex nanostructures. There is a need for increased complexity and functionality in these DNA nanostructures that isn't achievable using current design strategies.

Researchers at the Biodesign Institute of Arizona State University have developed a novel design strategy to overcome the problem of the double crossover based unit motif. Using their unique method, 2D and 3D gridiron-like structures, in which the scaffold strand and corresponding double helices are not restricted to 1D parallel raster fill pattern, can be achieved. They've constructed a series of DNA Gridiron networks having highly complex, wireframe geometries.

The gridiron structures already achieved with this technology range from finite 2D arrays with reconfigurability, to multi-layer and 3D structures and even curved objects, highlighting the versatility and programmability of this novel strategy.

Potential Applications

- Construction of DNA gridiron networks with complex wireframe geometries such as two-dimensional arrays with reconfigurability, three-dimensional structures and curved objects:
 - o Nanodevices molecular scale electronics
 - o Nanorobotics
 - o Nanomedicine personalized medicine
 - o Biosensors
 - o Smart drug delivery nanocarriers

Benefits and Advantages

- Many gridiron units can be connected to form a variety of 2D and 3D lattices and are not restricted to only stacked multilayer structures
- Highly programmable and amenable to dynamic controls
- Flexible joints allow for control or reconfiguration of the gridiron structure using external forces on selected corners
- Yield analysis shows high yields (~36% for the gridiron tweezers, ~85% for the gridiron screw, ~89% for the four-layer gridiron and ~51% for the gridiron sphere)
- The scaffold strands can travel in multiple directions

Contact

Status: Patent Pending

Yash Vaishnav, PhD, MBA

Intellectual Property

Vice President

Business Development, Life Sciences

Arizona Technology Enterprises, LLC (AzTE)

P: 480.884.1648

F: 847.971.2871

YASH@AZTE.COM

HEALTHSCIENCES@AZTE.COM

